今天是:
设为首页  |  加入收藏

当前位置: 主页 > 新闻动态 > 教育动态 > >>正文

巧用数学错题打造魅力课堂
2021-06-19 10:10佚名 

  美国心理学家索恩迪克说:“学习的过程是一个循序渐进的尝试和错误的过程。“可以说,没有错误就没有真正的学习意识。面对学生的错误问题,我们应该采取积极的态度,抓住“战士”,让学生摆脱对错误的恐惧,积极参与数学学习过程,遇到错误,识别错误,在纠正错误的同时提高学习效率。

  善待“错误”,巧妙地“引入”了奇妙的“稀疏”,事半功倍,获得两倍的结果

  学生在学习过程中会犯错误是很常见的现象。这也是不可避免的现象。作为老师,我们应该善待“错误”,巧妙地“引入”了奇妙的“稀疏”,这往往会使我们的数学教室更具吸引力,收到了事半功倍的效果。例如:对或错:两条绳子的长度相同,第一次剪掉3/8,第二次切断3/8米,两个切口的长度相同。()学生误解了√。原因,这是学生对分数概念的理解。分数可以代表数字,还表示比率,所以,发生错误时我不急于给他们正确的答案,只是利用趋势来“告诉我您的想法,您可以援引特定数据吗?在小组中交流。“它不仅使学生有机会进行反思,并创造“矛盾”,让学生表达意见,深入分析通过老师的及时电话,梳理学生思维的矛盾,引导学生从三种不同的情况入手,通过计算探索正确答案。

  巧妙地使用错误的问题,保持错误,点燃热情

  《新课程标准》指出:“请仔细听, 积极思考, 练习动手, 独立探索 合作交流 等等。,两者都是学生学习数学的重要途径。“在教学过程中,我们必须立足于现实,创造一个情况激发学生的学习热情,提高学习效率。例如:在圆锥体的体积教学中,我让学生自己做报告反馈时,学生得出的结论是,圆锥体的体积等于圆柱体体积的1/3。我知道学生的结论是错误的,但是我没有立即否认而且他没有直接将正确答案告知学生,反而, 它使学生无影无踪:“尝试另一个不同大小的蛋筒。“此时,他们不再平静开始怀疑刚才的结论,为什么没有必要?哪种圆锥和圆柱有这种关系?突然激发了学生的学习热情,课堂气氛非常活跃。老师们很有才华利用“错误的问题”来激发学生对数学的期望和好奇心,眼睛 手 brain, mouth and other senses are used together,In practice: "The volume of a cone is equal to 1/3 of the volume of a cylinder with the same base and height."that's it,I cleverly used the wrong resource,keep mistake,Ignited the enthusiasm of students to learn,Constructed a charming classroom.

  Magical wrong question,Expansion of teaching materials,Improve thinking

  Education experts pointed out: "The teaching material is to achieve the curriculum goalAn important resource for implementing teaching,But not the only resource,And more resources are generated in the classroom.For example: when teaching a question like "Proportional": "Is the surface area of a cube in direct proportion to its edge length",After I let the students complete it independently,It was found that the error rate was as high as 90%,They commit only paying attention to the formation of a proportional relationship,Ignoring that the proportional quantity must be a certain ratio,Considering that the surface area of a cube and its edge length are two related quantities,Their ratio is certain,I didn't notice the surface area of the cube ÷ its edge length = edge length×6,And the edge length changes,The edge length×6 also changes accordingly,So there is no quantification.Such mistakes are also in my teaching presupposition,therefore,When I was organizing exchanges,Let students fully describe their thinking and judgment process,No matter whether it is to judge whether the two quantities are proportional or not proportional,We must be justified and well-founded.originally,So far, it can be said that the teaching task has been completed,But I think this is an extended textbook resource,A good time to improve students' thinking,So he asked: "What can constitute a direct proportion to the surface area of a cube?"From a question in the book,Lead to deeper questions,This not only enriches the teaching material resources,让学生解决问题,在纠正错误和反思的过程中,加深对知识的理解和掌握,丰富了教学资源,改善学生的思维能力。

  的确,学生犯错误是不可避免的,不可避免的,只要学生想他们的错误中必须包含一些合理或富有表现力的内容,甚至闪闪发亮。作为老师,只是用你的心,总是可以找到这些亮点,如果您能欣赏并肯定,并指导他们更正他们的思维过程,帮助他们从错误中探索新知识,积极参加数学学习,肯定会帮助我们创建一个更具吸引力的数学教室,从而提高课堂教学效率。(恩平年乐学校梁留青)

  资料来源:《江门日报》

关闭窗口